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Abstract

Gravitational field mismodeling produces errors in the estimated orbital
motion of near Earth satellites. This effect is studied using a linear perturba-
tion approach following the analysis of Kaula. The perturbations in the orbital
position as defined by either orbital elements or Cartesian components are de-
termined. From these perturbations it is possible to ascertain the expected
signal due to gravitational mismodeling that would be present in station-to-
satellite laser ranging measurements. This expected signal has been estimated
for the case of the Lageos satellite and using the predicted uncertainties of the
GEM-T1 and GEM-T2 gravity field models. The results indicate that observ-
able signal still exists in the laser range residuals given the current accuracy of
the range measurements and the accuracy of the gravity field models.
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1 Introduction

Satellites in Earth orbit are affected by a wide range of gravitational and non-
gravitational perturbations. An accurate modeling of these perturbations is required
if the full scientific benefits of geodetic satellites, such as Lageos, are to be obtained.
This modeling is sometimes limited by a lack of understanding of the physical pro-
cesses producing the perturbations, but it is more often limited by the accuracy of
the parameters that are needed in the model definition. A particular example of this
latter scenario is the modeling of the Earth'’s gravity field. The mathematical form of
the gravitational perturbation due to the Earth is well defined (using spherical har-
monics) but the constants used in the model are of varying accuracy. This leads to a
mismodeling of the gravitational effect and a resulting mismodeling of the predicted
satellite motion. This mismodeling is observable if accurate tracking measurements
of the satellite exist; such as laser range tracking.

To ascertain the level of mismodeling of the gravity field existing in current models,
a linear perturbation analysis has been applied. This approach makes it possible to
predict the expected magnitude of orbit error due to gravity field modeling error and
it also has been extended to determine the expected signal that would be observed
with laser range tracking.

The application of using spherical harmonics for modeling the Earth’s gravity
field is first summarized. This is followed by a discussion of satellite dynamics and
the resulting orbital motion due to the presence of a nonspherical gravity field. The
perturbation approach, based on the method of Kaula, is then presented. Pertur-
bations in orbital elements and satellite position are included. From these results,
the expected perturbation in a station-to-satellite range measurement is then derived.
These linear perturbation results facilitate a covariance analysis based on the expected
uncertainties of present day gravity field models. Numerical results are presented for
the case of the Lageos satellite and the GEM-T1 and GEM-T?2 gravity field models.






2 Gravitational Field

2.1 Spherical Harmonic Model

The common approach for modeling the gravitational field of a planetary body is
through the spherical harmonic representation,
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where: u is the product of the universal constant of gravitation G and the mass of
the Earth M; a,. is the semi-major axis of the Earth’s reference ellipsoid; r, ¢, A are
the satellite distance, latitude, and longitude, respectively, in a body-fixed coordinate
system; Cym, Sim are spherical harmonic coefficients of degree ¢ and order m; and
P, are the Associated Legendre Functions of degree £ and order m. A gravitational
model consists of a set of constants that specify u, a. and the Cyp, S¢m coefficients. It
should also be noted that such a set of constants also implicitly defines a body-fixed
coordinate system. The coordinate system defined is precisely that which was used
in the solution of the spherical harmonic coefficients.

This representation of the geopotential can be thought of as consisting of three
constituent parts,

U=Up+U + U, (2)
The first part is simply the leading term of the expansion corresponding to the degree
and order zero term. The Associated Legendre Function, Py has a value of one as
does the Cyg coefficient. So the leading term is simply,

Up = (3)
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This is the familiar potential resulting from treating the body as point mass and that
used for deriving the fundamental results of two body motion.

The second part of the spherical harmonic representation are those terms (besides
the above two body term) which do not have a longitude dependence. These are
the terms corresponding to m = 0 and are denoted as the zonal contribution to the
potential,
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The degree 2 zonal term models the contribution due to the planetary oblateness.
As such, it is the second largest contributor to the overall potential following the
central body contribution. (The degree 1 term is zero assuming that the center of the
Earth-fixed coordinate system coincides with the center of mass of the Earth.) The
notation J; is often used for the zonal coefficients instead of the above C,. The two
notations simply differ in sign,

Je==Cep (5)



so that the zonal part of the potential could also be written in the form,
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The C notation will be used throughout this report.
The remaining part of the spherical harmonic representation is that part depend-
ing on longitude,
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The largest longitudinal contributor to the potential is usually the degree 2 and order
2 terms. These terms represent the amount that the planet is “out of round” about the
equator. (As with the degree 1 zonal coefficient, the degree 1 and order 1 coefficients
will be zero under the assumption that the center of the coordinate system coincides
with the center of mass.)

The spherical harmonic representation of the potential (equation (1)) can then
also be written as,
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In the general case, where temporal variations in the potential exist (e.g., tides),
the spherical harmonic representation is still valid though the geopotential coefficients
(Cem» Sem) then become time dependent.

2.2 Normalized Spherical Harmonic Model

The spherical harmonic coefficients (Cem, Sem) appearing in equation (1) are unnor-
malized. These coefficients tend to very small values as the degree increases. This
is partly a consequence of the nature of the Earth’s gravity field but is for the most
part due to the fact that the Associated Legendre Functions tend to large values as
degree increases. Thus it is numerically advantageous to normalize the Associated
Legendre Functions and the coefficients. The normalization is achieved by multiply-
ing the Legendre functions by a scale factor depending on the degree and order of
the function. The resulting normalized Associated Legendre Functions maintain the
same magnitude with increasing degree. Denoting normalized values by an overbar,
the normalized Associated Legendre Functions are,
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where the Kronecker delta, d0, is equal to 1 if m is zero and equal to 0 if m is greater
than zero. The geopotential coefficients, Cem and Sem, are normalized by the inverse
of this scale factor,

étm - 1 (€+m)' 2 Clm . (10)
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The spherical harmonic expansion of the geopotential (equation (1)) can now be
written in terms of normalized quantities,

U= gi (&)l Xl: Pyn(sin ¢) [C(m cosmA + Sim sinmz\] (11)
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This is usually the preferred formulation for numerical implementations of the spher-
ical harmonic representation. For some analytical developments it is simpler to work
with the unnormalized form (equation (1)).

2.3 Earth Gravity Field Model

Numerous spherical harmonic models of the Earth’s gravity field have been developed.
These models are primarily based on the Earth-based tracking of low-Earth orbit
satellites. Other data types that are valuable in estimating the Earth’s gravity field
include surface gravity measurements, satellite-to-satellite tracking and more recently,
satellite radar-altimeter measurements of the ocean surface. The maximum degree
(€) of the spherical harmonic representations of the Earth is more than 300 in some
models. Models based solely on satellite tracking data usually have a maximum degree
of approximately 50. Indeed, for most satellite applications, high degree models are
not needed due to the insensitivity of the satellite motions to the small scale features
represented in such models.

A good general purpose model for satellite applications is the GEM-T1 model
developed at the NASA Goddard Space Flight Center (GSFC) [Marsh et al., 1988].
This model is based solely on the tracking data of Earth satellites and is complete
to degree and order 36. The accuracy of this model is greatly improved with respect
to earlier Goddard Earth Models (GEM). In addition to estimating the spherical
harmonic coefficients of the gravity field, GSFC also estimates the accuracy of those
coefficients. Such accuracy estimates are very valuable when attempting to estimate
the orbit error which may be induced when using the model for orbit propagation.

The GEM-T1 model was followed in development by the GEM-T2 model {Marsh
et al., 1990]. This model was a result of continual refinement in analysis techniques
as well as the inclusion of more and newer observations. The GEM-T2 model is
similar to the GEM-T1 model in that it is based solely on the analysis of satellite
tracking data. The GEM-T1 and GEM-T2 models were the primary models used in
the analyses presented here.



Table 1. The GEM-T1 Gravity Model.
Normalized Zonals Cy in units of 1 x 10~*

£ m Cim O . m_ Cm o E m Cpm o
7 0 -484164.97 0.4 1 0 -19.73 4.0 2% 0 184 47
3 0 957.24 0.1 15 0 187 4l 27 0 412 43
4 0 538.73 1.1 16 0 -938 45 28 0 -585 50
5 0 68.78 0.3 17 0 2040 4.0 29 0 -391 47
6 0  -14810 15 18 0 1129 4l 30 0 -027 46
70 90.53 0.8 19 0 -461 34 31 0 512 47
8 0 4590 24 20 0 1531 51 32 0 008 46
9 0 2838 1.5 21 0 978 28 33 0 223 45
10 0 57.22 26 22 0 -484 438 34 0 -248 40
110 -5126 2.5 23 0 -2413 26 3 0 127 47T
12 0 3208 35 24 0 -096 49 3 0 074 41
130 4223 35 25 0 689 34

The GEM-T1 normalized zonal coefficients, complete to degree 36, are given in
Table 1. The nonzonal coefficients are listed in Table 2. Along with the coefficient
values in each table, the estimated uncertainty (o) of the individual coefficients is
also given. The gravitational constant and equatorial radius specified for the GEM-
T1 model are,

4 =GM =3.98600436 x 10" m3/s?> and g, =6378137.m (12)

Several points can be made by examining the coefficient values and their uncer-
tainties. Foremost, the value of the second degree zonal coefficient is seen to be more
than two orders of magnitude larger than any other coefficient. The next largest coef-
ficients are those of degree 2 and order 2. Analogous to the second degree zonal which
represents the oblateness of the Earth, these coefficients correspond to the ellipticity
about the equator.

Also evident is that the magnitude of the coefficients decreases significantly as the
degree increases (keep in mind that these are normalized coefficients and effectively
have equal weight in their total contribution to the gravitational potential). This
characteristic has been formalized in the so-called “Kaula’s Rule” [Kaula 1966]. This
rule gives the expected size of the Earth’s normalized harmonic coefficients of degree
¢ to be £10~53/£2. This rule of thumb allows one to estimate the expected magnitude
of a gravitational coefficient if a value is not otherwise known (this is particularly
convenient for higher degree coefficients for which accurate estimates have generally
not been obtained). The magnitude of the GEM-T1 coefficients (complete to degree
and order 36) are plotted in Figure 1 along with Kaula’s Rule.

The estimated accuracy of the various coefficients shown in Tables 1 and 2 show
that the lower degree coefficients are the best determined and the accuracy degrades as
the degree increases. This variation in accuracy is a reflection of the fact that satellite
tracking data was used to solve for the coefficients. As discussed in later sections,
the sensitivity of the satellites to the harmonic coefficients decreases as the degree
increases. That is, the low degree coefficients produce large perturbations to the
orbital motion and the high degree coefficients produce much smaller perturbations.
The ability to recover high degree coefficients is a direct function of the accuracy of
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Figure 1: Absolute value of the normalized GEM-T1 coefficients and Kaula’s Rule.

the tracking data being utilized and also the geographic distribution of that data.
Since the high degree coefficients represent fine scale features in the gravity field it is
necessary to have wide geographic coverage, and accurate tracking data, to completely
capture such details. The low degree coefficients on the other hand represent the large
scale features (continental in size) and it is possible to accurately model such details
given sparser geographic coverage.

Overall, the accuracy of the geopotential acceleration is dependent on the con-
stants u, Cim and S, and the accuracy of the coordinate transformation from body-
fixed to inertial coordinates. The accuracy is also clearly dependent on the degree of
truncation of the infinite series describing the potential. It should be noted that the
quantity a. enters the potential strictly as a scaling factor and thus does not affect
the accuracy of the geopotential computation. Of these possible error sources, the
accuracy of the Cy, and S, coeficients is currently the limiting factor in precise
low-Earth orbit determination.



Table 2. The GEM-T1 Gravity Model. Normalized Sectorials and Tesserals
_ CupandSpminunitsof1x109
- CemanComw -

t m Cipm o S, o £ m Ce o S, o
A T B 3 N 3
3 1 2029.77 1.0 249.59 1.1 3 2 903.35 1.1 —-620.42 . 1.2
4 1 -53343 9 -47512 B 4 2 34700 15 66403 15
5 1 —5895 25 —9554 28 5 2 68579 25 -32341 29
6 1 -8138 18 2389 L7 6 2 5161 32 -375.00 3.2
7 1 277.10 3.9 97.82 4.2 7 2 317.71 4.4 91.61 5.2
8 1 28.86 3.1 54.72 3.0 8 2 70.38 5.2 68.45 5.1
9 1 148.04 3.8 24.53 8.0 9 2 31.14 5.9 -32.39 7.4
10 1 76.97 4.4 -138.11 4.3 10 2 -~80.52 6.7 -51.34 8.7
n o1 950 70 -2781 66 12 9.05 72 -99.24 9.0
12 1 —~49.26 5.6 —49.63 56 12 2 7.64 7.0 34.92 6.9
13 1 -54.06 8.9 43.46 6.0 13 2 53.44 8.7 -=57.58 103
14 1 -1875 63 2322 6.7 14 2 -3481 T -607 12
15 1 829 65 1421 65 15 2 =216 95  -3644 105
8 1 3171 62 1735 69 16 2 -1564 9.0 2454 93
17 1 -394 80 -2685 9.0 17 2 -578 88 1712 93
18 1 -23 61 -4561 638 18 2 841 9.9 1684 105
19 1 -11.59 89 538 10.2 19 2 844 90 —-1047 9.4
20 1 1451 67 =2127 69 20 2 1988 96 323 99
21 1 -1539 92 4175 98 2 2 9 92 -261 93
2 1 839 75 -1472 713 22 2 -1420 87 210 89
23 1 87 8.5 14.60 84 23 2 -.53 9.5 -1.78 9.5
24 1 8.12 73 ~-29.20 7.2 24 2 -5.85 8.8 5.20 8.6
2% 1 17 435 78 25 2 372 93 521 94
2% 1 497 69 -1725 6.8 2% 2 -529 83 25 83
27 1 .52 7.5 6.61 7.4 27 2 10.22 8.3 -2.82 84
28 1 653 70 -1003 6.6 28 2 -843 75  -1185 76
2 1 347 7.0 242 170 29 2 946 7.6 433 717
30 1 -1.62 6.4 -9.09 6.3 30 2 -4.05 7.0 -5.36 7.2
31 518 68 238 6.6 31 2 860 68 84 68
32 1 -9.15 6.0 -9.25 5.9 32 2 1.86 6.4 4.37 6.5
33 1 1.27 5.8 2.13 5.7 33 2 -1.02 6.3 95 6.3
k7”1 1 -1.56 3.6 -9.10 58 4 2 3.58 5.9 5.18 59
3 1 -191 56 201 56 3 2 -255 586 103 56
36 1 288 52 584 52 8 2 18 53 120 5.3
3 3 720.99 1.2 1413.17 1.2
4 3 99098 O -20062 .9 4 4 -19%003 9 30846 .9
5 3 —44820 20 -215.14 21 5 4 -20482 17 5241 1.7
6 3 6197 25 464 26 6 4 -9280 19 -47331 1.9
7 3 250.74 4.1 -209.16 4.3 7 4 -273.74 31 -122.02 3.1
8 3 -19.97 4.6 -86.94 4.7 8 4 =246.06 3.6 67.75 3.7
9 3 -155.37 6.6 -84.02 7.0 9 4 -12.83 8.7 23.26 5.5
10 3 131 71 ~16148 7.5 10 4 -9731 60  -69.38 6.3
11 3 -2889 83 -13250 86 11 4 -3321 89  -7000 8.7
12 3 32.42 8.7 17.94 9.5 12 4 -65.30 8.5 -3.01 8.9
13 3 -14.03 84 83.68 8.8 13 4 -882 108 -37 104
14 3 3693 90 2242 96 14 4 -883 102 188 107
15 3 44.63 9.2 26.54 9.8 18 4 -44.38 10.5 12.64 10.1
16 3 -3208 83 -4503 85 16 4 3651 108 4386 11.0
17 3 10.12 10.9 989 113 17 4 12.59 10.2 31.22 100
18 3 -1.00 9.6 -7.05 9.6 18 4 43.42 9.0 6.09 9.4
19 3 144 110 1420 113 19 4 257 10.7 767 10.8
20 3 827 106  13.72 106 20 4  -180 92 8 96
21 3 199 110 2260 11.0 21 4 25 103 699 104
22 3 6.73 10.2 -8.09 104 22 4 -9.45 9.7 16.71 9.8
23 3 -4.56 10.2 -11.95 103 23 4 -10.03 9.9 -1.67 9.9
24 3 6.91 9.4 -10.59 9.5 24 4 6.06 9.5 18.11 9.7
25 3 -326 92 =311 92 2 4 635 9.7 2153 97
26 3 -.26 8.7 -3.72 8.8 26 4 5.32 8.9 4.90 9.1
27 3 -510 87  -186 8.7 27 4 292 88 —64 87
28 3 -.26 8.1 1.17 8.1 28 4 2.88 8.1 -2.49 8.1
29 3 -439 78  -176 79 29 4  -636 79 73 78




Table 2. Continued.
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¢ m Cim o Spm o ¢ m C 0 Sm @
30 3 -1.61 7.3 1.48 7.2 30 4 -2.11 7.4 -3.92 7.4
31 3 -1.87 7.1 -4.08 71 31 4 -4.95 7.0 -1.64 7.0
32 3 -.67 6.6 3.00 6.6 32 4 2.02 6.6 -3.38 6.6
3 3 -1.70 6.3 -2.88 6.3 a3 4 -.24 6.4 29 6.4
34 3 -.51 5.9 2.21 5.9 M4 4 2.8% 6.0 -1.88 6.0
35 3 .87 5.7 .89 5.7 35 4 2.74 5.7 1.49 5.7
38 3 -.81 5.4 -1.39 5.4 36 4 1.32 54 -.12 54

5 5 177.76 22 -666.03 23

.1 5 -—-265.76 1.3 -537.75 1.3 6 8 9.08 8 -238.33 .8

7 -] 3.47 2.7 19.65 2.8 7 6 -357.85 5 150.92 5

8 5 ~24.93 2.8 85.30 2.8 8 [ -66.42 2.0 312.83 1.9

9 5 -14.11 4.3 -60.06 4.4 9 6 70.53 3.2 216.63 3.2
10 ] -350.44 5.3 -~43.83 5.5 10 6 -34.74 3.5 -77.72 3.3
11 3 45.91 8.9 55.28 73 11 6 8.47 5.0 24.29 5.1
12 L] 30.60 8.0 -1.47 8.1 12 (] 1.39 6.2 45.83 6.1
13 5 59.62 10.0 5745 105 13 ] ~22.39 7.7 -11.84 7.7
14 L) 2280 10.1 -11.61 10.1 14 8 -3.19 9.2 6.51 9.1
15 5 16.07 115 10.88 121 15 ] 2723 105 -51.71 104
18 5 -7.72 113 -1.68 10.9 16 (] 1799 11.1 -26.78 11.0
17 5 -11.15 10.6 -5.60 11.2 17 6 29 122 -30.42 120
18 5 1.74 11.7 21.13 114 18 8 31.20 11.0 -85 11.0
19 5 -2.45 10.7 17.38 108 19 8 -6.25 111 392 108
20 5 -10.42 10.9 30 107 20 (] 12.76 108 97 108
21 3 17.76 11.1 -15.89 11.2 21 8 421 10.1 -835 10.0
2 ) -4.63 10.5 -.13 10.5 24 8 14.63 9.7 2.43 9.8
23 -] 1.99 108 -794 108 23 6 10.00 9.7 4.96 9.5
24 5 -14.08 9.7 -7.98 9.7 24 6 =31 9.5 -.68 9.6
25 L} -2.46 9.5 -2.35 9.6 25 6 5.94 9.6 -6.74 9.5
26 L] 4.30 89 10.65 8.9 26 (] 8.54 9.0 3.2 9.1
27 5 -1.59 8.7 3.71 8.7 27 ] 1.77 8.8 ~2.13 8.8
28 L] 2.92 83 -.24 8.2 28 6 -8.33 8.1 2.00 8.1
29 5 3.45 7.9 3.54 7.9 29 8 -.30 7.8 -2.47 7.8
30 5 3.39 74 .70 74 3o 8 -3.22 7.4 4.17 7.4
31 5 91 7.1 1.46 7.1 31 é -.56 7.0 77 7.0
32 5 -.05 6.7 -2.79 6.7 32 6 -3.83 6.6 .22 6.6
33 5 -.51 6.3 3.24 6.3 a3 6 1.38 6.4 -1.25 6.3
M 5 -1.30 6.0 .04 6.0 k21 (-] 58 6.0 -.32 6.0
35 5 -.24 5.7 -.74 5.7 35 6 .83 5.7 -1.48 5.7
38 ] -1.18 54 .34 5.4 36 6 -.58 5.4 -.90 5.4

7 7 1.60 2.1 22.00 2.0

8 7 70.42 1.9 74.86 1.9 8 8 -—118.88 3.9 122.33 3.8

9 7 -118.62 3.5 -100.5% 33 9 8 184.50 3.2 -1.85 3.2
10 7 9.75 34 -4.29 3.5 10 8 43.75 3.0 -92.48 2.9
11 7 9.61 44 -91.89 4.3 11 8 -6.35 4.1 22.58 4.0
12 7 -12.70 5.2 34.83 5.3 12 8 -21.22 3.0 16.90 3.1
13 7 3.57 6.5 -8.62 6.3 13 8 -12.30 5.0 -11.09 5.0
14 7 37.48 74 -4.36 7.6 14 8 -32.94 S.1 -13.18 5.0
15 7 66.71 8.8 11.45 8.8 15 8 -40.67 6.7 24.73 6.7
16 7 3.05 10.1 -9.07 10.1 16 8 -13.44 8.0 2.28 7.9
17 7 2295 104 -11.98 105 17 8 31.16 9.2 8.77 9.2
18 7 -80 113 6.72 113 18 8 45.72 10.8 43 10.5
19 7 5.14 115 -166 115 19 8 14.86 10.6 -11.33 105
20 7 -7.79 114 490 114 20 8 -201 108 -1.29 108
21 7 -1223 108 -1.41 10.7 21 8 -18.10 10.7 2.52 10.6
22 7 12.75 11.1 1.30 11.1 22 8 -9.82 10.2 -6.83 10.1
23 7 -233 104 265 103 23 8 4.22 9.6 -6.80 9.5
24 7 -2.51 10.0 5.07 9.9 24 8 -2.43 9.7 7.56 9.7
25 7 26 9.5 3.46 9.4 25 8 1.43 9.1 -4.12 9.1
26 7 5.45 8.9 2.58 8.9 26 8 3.09 9.1 -2.14 9.1
27 7 6.93 8.5 -2.82 8.4 27 8 -4.18 8.7 -4.41 8.7
28 7 -4.65 8.2 -1.54 8.2 28 8 -.57 8.2 ~3.18 8.1
29 7 1.18 7.9 -7.29 7.8 29 8 -6.42 7.7 2.54 7.7




Table 2. Continued.

ft m C o S o ¢ m Cpm o0 Sy o
_r__m___L7 —i7 73 -.13 13 0 8 295 74 57T 13
n 7 148 70 -175 70 31 8 09 70 -118 7.0
32 7 =308 67 1.86 6.7 32 8 88 6.6 332 6.5
33 7 -04 83 1.78 63 33 8 -.08 63 1.58 6.3
“ 7 231 5.9 10 59 34 8 71 60 -79 60
s 7 07 8.7 1.53 8.7 33 8 27 8.7 A8 8.7
3 7 -7 54 -42 54 3 8 -105 53 -54 53
9 9 -5555 59 9758 5.7
10 9 12818 35 -—48.19 35 10 10 9456 4.3 -20.10 4.2
11 9 -3878 41 4028 40 11 10 -5208 4.3 -17681 4.3
12 9 4694 44 1322 45 12 10 =913 28 3168 2.7
13 9 2038 44 4578 4.4 13 10 4330 4.7 -38.04 4.7
14 9 3716 51 1793 5.2 14 10 3700 29 -280 28
15 9 1344 57 4102 5.7 15 10 959 49 1608 4.9
16 9 -1658 62 -5098 6.3 16 10 -1042 4.2 661 4.1
17 9 =320 69 -3432 7.0 17 10 210 58 2012 5.8
18 9 -1352 81 1924 8.1 18 10 901 60 -1086 6.0
19 9 1.76 8.6 8.66 86 19 10 -3535 74 -266 7.3
20 9 2281 100 724 102 20 10 -2242 80 -8.09 8.0
21 9 1732 98 -939 938 21 10 365 85 1.84 85
2 9 1251 102 -948 103 22 10 501 92 2038 9.2
23 9 -403 101 -1039 10.1 23 10 1998 88 -3.76 88
24 9 -389 98 -143 98 24 10 1735 88 930 86
2% 9 -603 93 984 93 25 10 569 85 —447 85
% 9 252 87 -68 88 26 10 -484 85 166 8.5
27 9 40 83 216 83 27 10 -831 8.1 6.01 8.1
2% 9 294 80 -308 80 28 10 -7.28 8.0 120 8.0
29 9 -164 7.7 248 1.7 29 10 06 7.5 601 7.5
30 9 17 73 =384 73 30 10 1.23 7.2 -104 7.2
31 9 -38 69 -L.70 69 31 10 252 68 -374 68
2 9 1.95 6.6 J7 6.6 32 10 83 65 195 65
3 9 -29 63 187 6.3 3 10 23 61 -94 6.1
4 9 1.27 5.9 1.51 5.9 34 10 -149 59 -01 59
3 9 1.08 56 -207 56 33 10 -143 56 -84 56
3 9 -32 54 55 54 3 10 -36 53 A7 53
11 11 5433 62 -5473 63
12 11 541 30 -952 29 12 12 -353 25 -11.80 25
13 11 -40.19 4.4 550 4.4 13 12 -2801 25 8641 25
14 11 808 36 -41.36 3.6 14 12 897 1.6 -3207 1.5
15 11 172 43 2893 42 15 12 -2833 34 1249 34
16 11 1402 39 -644 39 16 12 208 16 574 16
17 11 -17.11 4.7 17.50 4.7 17 12 34.27 4.1 17.26 4.1
18 11 -1280 40 -60 3.9 18 12 -2618 24 -16.53 23
19 11 1648 47 1347 4.7 19 12 320 47 433 4.7
20 11 1138 44 -2393 43 20 12 -406 32 1730 3.1
21 11 928 51 -36.78 5.1 21 12 282 52 1271 5.2
22 11 =937 54 -1838 5.3 2 12 744 40 -784 3.9
23 11 385 59 1368 6.1 23 12 2158 55 -1668 56
24 11 1274 68 1212 64 24 12 1234 50 -952 4.9
25 11 558 69 -128 7.0 25 12 -554 58 1101 59
2 11 320 68 505 6.7 26 12 -1965 5.8 543 5.7
27 11 -119 71 =310 7.1 27 12 -42 61 -172 6.2
28 11 -62 69 -8 7.0 28 12 40 6.2 243 6.2
29 11 -932 69 45 68 29 12 -8 63 -493 6.3
30 11 -162 67 508 6.7 30 12 379 62 -342 6.2
31 11 -166 64 585 6.5 3112 A5 6.1 462 6.1
32 11 -240 63 -85 63 32 12 -171 58 419 58
3 1 556 60 -48 6.1 33 12 522 55 4.13 55
M4 11 1.24 5.7 -3.83 5.7 M 12 45 53 249 53
3 11 88 54 -368 5.4 33 12 148 53 —206 5.3
3% 11 59 52 -73 53 3% 12 -22 51 -161 51
13 13 -6155 13 6827 1.3




£ m C {m g Sm o ¢ m C(m o S!m (4
14 13 153 9 462 9 14 14 <50.57 1.8 -8.37 1.8
18 13 -28.11 1.0 -498 1.0 15 14 6.17 1.0 -=23.61 9
18 13 1308 1.1 81 1.1 16 14 -19.12 .8 -38.29 .8
17 13 1691 1.2 20.11 1.2 17 14 -13.34 8 11.76 .8
18 13 -6.58 11 <3516 1.1 18 14 -9.28 1.2 -10.94 1.2
19 13 -6.09 1.6 -29.17 186 19 14 =5.12 T -1264 .7
2 13 26.65 1.3 489 1.3 20 14 10.32 1.8 -11.76 1.8
21 13 -18.17 21 11.60 2.0 21 14 18.78 1.2 8.70 1.2
22 13 -1695 1.4 1785 14 22 14 873 22 10.24 2.2
23 13 -~-1046 28 -7.51 28 23 14 4.61 2.2 =-3.27 22
24 13 -3.62 2.2 -38 22 24 14 -1864 238 146 28
25 13 738 35 -1519 38 25 14 2194 33 13.21 33
26 13 272 3.2 142 33 26 14 393 35 563 35
27 13 -5.98 4.2 -4.13 4.1 27 14 1197 43 664 43
28 13 .10 3.8 353 39 28 14 -2.11 4.3 -8.50 4.3
2 13 ~1.15 4.5 -1.98 4.5 2 14 =315 4.6 1.94 4.7
30 13 14.67 4.6 -02 46 30 14 -03 438 -255 48
a1 13 569 4.6 132 4.6 a1 14 ~-728 44 1.25 45
32 13 726 5.0 22 5.0 32 14 4668 4.6 692 46
33 13 3687 44 6.78 4.3 3 14 923 39 2.51 3.9
34 13 -8.08 48 1.28 49 4 14 -1.04 39 -29 39
35 13 -1.18 4.7 448 4.7 35 U4 -48 4.2 -12 4.1
36 13 77 45 3.79 45 36 14 -484 45 -4.07 45
15 15 -18.09 3.2 -8.09 3.2
16 15 -1253 39 -3230 239 16 16 =3241 7.1 -437 71
17 15 494 14 575 1.4 17 16 -=29.07 5.5 188 55
18 15 -37.76 38 -19.82 3.8 18 16 9.79 4.0 500 4.0
19 15 -1832 27 -12.77 27 19 16 -1990 50 -1193 5.0
2 15 -2273 35 -41 3.3 20 16 -1067 43 169 43
21 15 16.62 3.5 1498 34 21 16 873 42 -5.16 4.2
2 15 2794 3.3 3.10 33 2 16 09 5.0 -493 5.0
23 15 17.73 4.1 ~-228 40 23 16 490 45 11.77 4.6
24 15 981 36 -13.53 38 24 16 -49 82 6.28 6.2
25 15 -1.99 4.4 ~227 44 25 16 304 53 -1280 53
26 15 -11.38 48 4.70 49 26 16 582 64 -4.15 6.3
27 18 ~-4.34 53 .10 8.3 27 16 658 5.5 -4.11 5.6
28 15 ~8.21 58 538 58 28 16 -8.31 6.1 ~769 6.0
29 15 -1.27 56 -249 5.7 29 16 -220 64 -553 64
30 15 281 6.0 -9.28 6.0 30 16 82 63 566 6.3
31 15 45 56 -4.37 5.6 31 16 -4.51 6.4 480 6.4
32 15 391 85 —-4.94 5.5 32 16 292 6.2 410 6.2
3 15 -3.01 53 2.17 53 33 16 -39 57 1.97 5.7
M4 1S 76 5.4 3.00 5.4 34 16 1.13 5.6 ~2.66 5.6
3% 15 .26 5.1 283 .1 35 16 J3 0 54 -1.4 54
36 15 -1.82 438 1.86 438 36 16 1.34 5.2 -2.01 5.2
17 17 -3831 75 -2062 7.6
18 17 6.11 74 877 T4 18 18 -4.45 114 -5.06 114
19 17 2795 40 -1088 4.0 19 18 2185 9.2 =3.11 9.1
20 17 429 7.0 -898 7.1 20 18 10.58 6.5 1.30 6.5
21 17 -8.75 6.2 84 62 21 18 1683 8.2 -6.57 8.2
22 17 1381 64 -11.13 6.4 22 18 703 68 -1030 6.7
23 17 -7.21 63 -6.60 6.3 23 18 ~1.91 6.4 -6.30 6.4
24 17 -8.46 5.9 1.88 5.9 24 18 4.31 6.5 =507 6.5
25 17 -831 64 S35 64 25 18 -1.30 6.7 -1067 6.6
26 17 -4.89 5.9 828 5.9 26 18 -9.01 7.2 7.55 73
27 17 555 6.4 1.59 6.4 27 18 -5.19 6.9 594 69
28 17 4.52 6.9 -4.26 6.9 28 18 J6 6.7 -83 66
29 17 4.57 6.5 -2.78 &S 29 18 ~2.01 6.3 -.14 6.3
30 17 1.01 6.5 -1.54 6.5 30 18 J0 6.5 85 6.5
3t 17 -593 6.4 2.57 6.4 31 18 25 64 .85 64
32 17 -366 6.3 189 63 32 18 2.2t 6.2 -148 6.2
3 17 -2.14 6.0 3.04 6.0 33 18 87 6.1 -1.24 6.1




Table 2. Continued.

. m Cwm o S 4 E m Cpm 0 Sym o
317 3657 288 57 3 18 -2.712 88 -0 59
3 17 339 55 244 55 3 18 150 55 -5 55
8 17 217 53 -85 53 36 18 07 5.2 53 8.2
19 19 6.46 105 1042 105
20 19 -7.10 9.4 8.46 9.5 20 20 .71 131 -13.51 13.2
21 19 -2095 5.7 15.88 5.7 21 20 -19.04 9.9 18.54 9.9
2 19 662 82 -470 83 22 20 -1332 76 1478 7.6
23 19 -868 79 749 8.1 23 20 1722 84 -9.05 8.5
24 19 33 73 -1502 72 24 20 -606 80 -33 8.1
25 19 918 69 213 7.0 25 20 -373 70 -6.62 6.9
26 19 163 67 72 67 26 20 948 68 -1095 6.8
27 19 93 67 -623 67 27 20 295 67 301 67
28 19 442 67 1380 6.7 22 20 -98 70 113 70
20 19 -219 68 151 68 29 20 -480 67 316 6.7
30 19 -563 67 -264 6.7 30 2 -03 65 357 65
31 19 202 62 282 63 31 20 180 63 56 6.2
32 19 309 62 -151 62 2 20 -15 62 142 62
33 19 168 59 24 60 33 20 208 59 -75 59
34 19 60 87 100 87 MU 20 89 58 -40 5.7
33 19 -290 56 59 5.6 3 20 -77 55 -8 56
3 19 -2 53 -07 53 3 20 -91 53 -87 53
21 21 248 113 -6.85 113
2 21 -1322 104 760 104 2 2 -146 127 472 126
23 21 1082 64 764 64 22 2 -90 95 -214 95
24 21 1057 82 112 8.l 24 2 -173 79 -130 719
25 21 540 80 314 80 25 22 -187 75 -176 1.5
6 21 -39 73 -241 713 6 22 1091 78 916 7.8
27 21 207 67 -454 66 27 22 -14 66 293 686
28 21 249 66 27 66 28 22 -485 65 Sl 6.4
29 21 -940 62 -595 6.l 29 22 966 63 444 6.3
30 21 -745 65 -3.10 65 30 22 325 63 -554 63
31 21 234 64 358 64 31 2 -627 60 -573 6.0
2 21 117 61 588 6.1 32 22 -466 6. 5 6.1
a3 21 73 59 -84 538 3 22 -410 58 -110 58
M4 21 137 57 -66 58 U 2 8 56 42 56
35 21 138 54 274 54 3 2 02 54 330 53
36 21 T4 52 -212 82 8 2 57T 5.2 69 5.2
23 23 84 105 20 105
24 23 -214 99 -901 99 24 20 234 112 -121 112
25 23 457 63 -246 6.3 25 24 361 85 -38 85
2 23 235 7.1 8.95 7.1 26 24 -1.37 6.9 12.18 7.0
27 23 -539 70 -274 1.0 27 24 -194 61 262 6.1
28 23 -264 67 639 6.6 28 24 688 63 -1508 63
29 23 -501 60 -08 6.0 29 24 -253 54 370 54
30 23 -1.58 60 -534 59 30 24 -251 56 -04 56
31 23 950 54 565 55 31 24 -383 55 -191 54
32 23 386 58 48 8.7 322 24 -659 53 533 53
33 23 -63 56 -440 56 33 24 399 49 -48 49
M 23 -93 85 -214 55 4 24 673 53 85 53
35 23 -238 52 -156 5.2 33 24 253 S0 220 50
3 23 -122 50 -85 50 36 24 66 49 —142 49
25 25 495 85 401 85
26 25 -399 83 825 84 26 26 343 76 -427 15
27 25 1180 55 315 5.5 27 26 -501 64 400 6.4
28 25 113 64 ~481 65 2% 26 344 57 168 57
29 25 831 61 363 6.0 29 26 626 50 -369 5.1
30 25 885 60 561 6.0 0 26 -321 59 814 59
31 25 -774 52 =28 52 31 26 -469 438 36 4.8
32 25 -1317 51 770 5.1 32 26 -105 49 -153 49
33 25 -126 47 -482 47 33 2 813 43 554 4.3
M 25 625 49 -821 4.9 34 26 108 46 -901 46
35 25 -~3.39 4.7 1.52 4.7 35 26 -14.34 3.7 ~.14 3.7




Table 2. Continued.

£ m C im O SLR ag { m Cl’ﬂ ag SQ!_. g
38 25 03 49 8.65 4.9 36 26 845 39 11.08 3.9
27 27 6.89 3.0 345 3.1
28 27 -992 55 1.33 54 28 28 6.77 4.7 1.95 4.7
29 27 -7.47 34 -2.15 34 29 28 1032 6.1 -196 6.1
0 27 -1.92 4.7 7.82 4.7 30 28 -8.97 4.2 -5.16 4.2
31 27 700 3.3 1225 3.5 31 28 34 4.1 1.73 4.1
32 27 -3.09 44 -3.02 44 32 28 1.57 44 235 44
33 27 -1033 26 -2.13 286 33 28 -1089 3.3 1.90 33
M4 27 6.90 4.0 -54 4.0 4 28 455 35 -820 3.5
3% 27 278 1.5 -19.13 1.8 3% 28 -1089 19 -2335 2.0
36 27 -1019 25 423 2.6 36 28 695 2.0 566 2.1
20 29 864 76 3.16 7.6
3 29 482 6.3 12 8.2 30 30 -1.51 74 -42 74
1 29 -5.42 39 -5.95 4.0 31 30 -245 6.5 842 6.5
32 29 =334 4.1 2.50 4.0 32 30 8.29 4.7 1.67 4.7
3 29 -2132 35 19 3.5 33 30 252 44 -1349 4.4
M 2 -3.81 3.1 -4.48 3.0 4 -6.12 4.4 03 44
35 29 8.19 33 -3.15 33 35 30 3.71 438 -289 438
6 29 -1.4 29 -245 29 36 30 -1.56 3.7 -203 3.8
31 3 -23 72 -07 72
32 31 -.76 6.3 -2.71 63 32 32 .73 6.8 51 6.8
3 31 .17 5.8 1.16 3.6 3 32 241 6.3 -.02 6.3
M 31 235 43 230 43 M 32 -82 54 -1.16 5.4
B 31 1.33 8.1 1.03 8S.1 B 3 =398 53 57 53
36 3 =355 4.9 1.36 4.8 B 32 -88 438 -30 438
33 33 -27 65 -36 65
u 3 1.02 6.0 138 6.0 34 34 -21 61 -60 6.1
33 33 -29 56 167 56 33 34 -52 57 12 87
36 33 -240 49 -262 4.9 36 34 83 52 1.76 5.2
B 35 09 5.8 -.14 5.8
36 33 22 54 -73 8.4 3B 36 15 54 42 5.4






3 Satellite Dynamics

3.1 Cartesian Equations of Motion

The gravitational acceleration at any given location is obtained by computing the
gradient of the potential. Since the potential is given as a function of Earth-fixed
spherical coordinates, it is most convenient to compute the gradient in the same
system. In Earth-fixed spherical coordinates, this gradient is,
ouUu . 10U 1 oU .

a=VU = —i, +

or ;%ud’ + rcos¢79xu'\ (13)

where #,, @, and ) are unit vectors in the r, ¢, A basis. This basis has @, pointing
along the radius vector to the satellite, @, is in the direction of increasing north lati-
tude and @, is in the direction of increasing east longitude. The acceleration vector
obtained from this expression will be the inertial acceleration for the point of interest.
Though, as noted, the components of the acceleration are given in the Earth-fixed
coordinate system. For most applications it will be desired to have the components of
the acceleration expressed in an inertial (nonrotating) coordinate system. This is ac-
complished by applying the appropriate coordinate transformation from the spherical
coordinates to the desired coordinate system. So as a first step, the components of
the inertial acceleration in the Earth-fixed (rotating) coordinate system are obtained.
Substituting for the gravitational potential (equation (1)) and taking the indicated
partials in equation (13) gives the acceleration vector,

00 ¢t
i = {_% (€+1) (gri) ZPgm(sincb)[Cemcosm/\+5tm5inm’\]}'7r

m=0

=) ¢ R
+ {%Z(&) Z M[Cemcosm,\+sgmsinm/\]}ﬁ¢

r (=1 r m=0 a¢
B3 () g~ Pemsing) . _
+ {,.2 E:l ( - ) mZﬂ'" cos ¢ [~CemsinmA + Sgm cos mA] ¢ @y (14)

Notice that the leading term of the radial component (degree and order equal to zero)
is simply the expected two-body gravitational acceleration —u/r?. Also, if only zonal
terms are used (m = 0), then the longitudinal component of the acceleration is zero.

Next, the Earth-fixed Cartesian components of the acceleration can be obtained
by rotating from the spherical coordinates to the z, y, z basis. Let the components
of the acceleration in spherical coordinates be represented by,

@ = a,t, + agliy + arly (13)

where the components a,, a, and a, are given in equation (14). The acceleration
vector in Cartesian coordinates can be written as,

atyz = a,i; + ayﬁy + a.i; (16)



where @,, @, and @, are the Cartesian unit vectors in the Earth-fixed (rotating)
coordinate system. The Cartesian components of the acceleration can be obtained
from the spherical coordinate components through the standard transformation,

a, cospcosA —singcosA —sinl || a.
ay | =| cosgsinA —singsinA  cosA || ay (17)
a; sin¢ cos ¢ 0 ax

Having obtained the Earth-fixed Cartesian components of the acceleration one
further coordinate transformation is necessary to obtain the acceleration components
in the defined inertial coordinate system. If the matrix T represents the coordinate
transformation from the Earth-fixed system to the inertial coordinate system, then
the acceleration components in the inertial system will be,

- -
where dxy is the inertial acceleration vector in inertial coordinates,
axyz = axix + ayﬁ.y + azﬂz (19)

with @y, 4y and @, being the unit vectors of the Cartesian inertial coordinate system.
In component form, this final transformation will have the structure,

ax Ty T T || a.
Qy | = T2l Tg-z T23 a, (20)
az T31 T32 T33 a,

The actual elements of the transformation matrix T depend on the inertial coor-
dinate system being used. In the most general case, this transformation will account
for polar motion (the motion of the spin axis with respect to the Earth crust), Earth
rotation (the largest effect) and, precession and nutation (the motion of the spin axis
with respect to the stars). In the simplest case, all of these effects are neglected
except for Earth rotation. This defines a coordinate system with the same 2z axis as
the Earth-fixed system but not rotating with the Earth. For many applications such
a system is effectively inertial. The transformation from the Earth-fixed system to
this nonrotating system is simply,

cosd —sinf 0
T=|sinf cosé O (21)
0 0 1

where 6 is the Greenwich Hour Angle (the angle from a reference direction, usually
the Vernal Equinox, to the Greenwich meridian).



3.3 Lagrangian Equations of Motion

The equations of motion for a satellite moving in the gravity field are given by equation
(13). These equations are convenient for numerical computation of an ephemeris but
not for analytic investigations into the evolution of the orbital elements. Such analyses
are more conveniently performed using the Lagrangian equations of motion. These
equations are equivalent to equation (13) but directly give the time rates of change
of the Kepler orbital elements,

da 2 9V

& = nadM (22)
de _ 1-€2dV  (1-€)?8V (23)
dt = na% oM nale Ow

dw _ cos i v  (1-)rav (24)
dt ~  na®(l-e?)'/?sini di nae de

di cosi__ V _ 1 v 5)

dt = na?(l —e?)/2sini dw na?(l — e?)/2sini IQ

dan 1 ov

dt  na®(l —e?)/2sini B (26)
M _ 1=V 24V o
dt nale de na da

(28)

where V is the perturbing gravitational potential, i.e., the gravitational potential
excluding the point mass contribution,

U=§+v (29)

These equations require that the perturbing gravitational potential V be repre-
sented in terms of the orbital elements instead of the spherical coordinates as ex-
pressed in equation (1). This conversion has been carried out by Kaula [1966],

u o0 a. [ 1 - =)
=23 (2) X X Fenpli) 3 Grpa(e)Sempalw, M, 2,6) (30)

8 a1 m=0p=0 q=-00
where C—, {—-m even S {—~m even
Stmpq = [ tm ] COS Yempe + [ tm Sin Ygm (31)
" =Stm t-m odd e Ce t-m odd .
and
Vimpg = (| = 2p)w + (I = 2p + Q)M + m(2 - 6) (32)

All quantities having been previously defined except for the inclination function
Fymp(i) and eccentricity function Gep(€), which are given by Kaula. In this for-
mulation, the overbar on Fyn, indicates it is normalized (in the same fashion that



3.2 Orbital Elements

While it is convenient to express the satellite equations of motion in the Cartesian
coordinate system, the evolution of the satellite orbit is more conveniently evaluated
in terms of its orbital elements. This is because the satellite motion is nearly Ke-
plerian (i.e., it corresponds closely to the ideal elliptical motion which results from
the gravitational motion about a point mass). The orbital elements are a set of six
parameters which uniquely define the position and velocity of the satellite. Transfor-
mations exist which convert Cartesian position and velocity to orbital elements and
vice-versa. The set of elements used in this study are the conventional set of Kepler
elements. These six elements are

semi-major axis —a— One-half the length of the major axis of the ellipse. For a
circular orbit this would be the radius of the circle.

eccentricity —e— Measure of ellipticity (0 < e < 1). For a circular orbit e = 0.

inclination —i— The angle formed by the orbital plane and the equatorial (z-y)
plane (0° < ¢ < 180°).

right ascension of the ascending node —{2— The angle measured in the equa-
torial (z-y) plane from the z-axis to the point of intersection of the orbital path
with the equatorial plane. The orbital path will intersect the z-y plane in two
places: once ascending (south to north) and once descending (north to south).
The z-axis will normally be defined to be pointing at the vernal equinox (the
location of the Sun in the sky on or about March 21).

argument of perigee —w— The angle measured in the plane of the orbit from
the ascending node to the point of the orbit corresponding to closest approach
(the distance from the center of the Earth to the satellite is a minimum). This
angle will not be defined if the orbit is circular.

mean anomaly —M— A non-physical angle. Defined as M = n(t — T) where T
is the time of periapsis passage, t is the current time, and n is the mean motion
(n = 27/P, where P is the orbital period). Unless the orbit is circular, the
satellite does not move with a constant angular rate and thus the actual angle
swept out by the satellite (which is the true anomaly) in a given amount of
time will not correspond to the mean anomaly. The mean anomaly would be
the angle swept out by the satellite if it were moving at a uniform rate.

At any given instant the Cartesian position and velocity of the satellite can be con-
verted to the corresponding set of Kepler orbital elements. These values of the or-
bital elements will continually change in time due to the various forces affecting the
satellite; these instantaneous values for the orbital elements are referred to as the
osculating orbital elements. And it is the changes in these osculating orbital elements
(due to the acting forces) that is of primary interest here.



the Associated Legendre Functions are normalized via equation (9)). This is required
since normalized spherical harmonic coefficients are being utilized.






4 Satellite Motion
4.1 Precessing Ellipse

A satellite moving in the low-Earth orbit environment does not follow the idealized
elliptical path resulting from the consideration of the motion of a particle about a
point mass. Instead, the satellite will deviate from the idealized elliptical path as
the various acting forces perturb the satellite. In this discussion, only the perturbing
forces resulting from the Earth’s gravity field are considered. Though it should be
emphasized that depending on the actual orbital geometry and spacecraft design,
other forces (principally, atmospheric drag, solar radiation pressure, and lunar and
solar gravity) may be more important.

The general problem of determining the motion of a satellite orbiting in a gravita-
tional field (described by spherical harmonics) can only be solved through numerical
integration. The equations presented in section 3 can be used for this purpose. How-
ever, it is possible through various degrees of approximation to analytically determine
the important characteristics of the motion.

The largest effect on a satellite orbiting the Earth is that due to the oblateness
(predominantly the second degree zonal Cp). This is not surprising given the size
of the second degree zonal with respect to all other coefficients of the gravity field
(Tables 1 and 2). The most noticeable effect of the oblateness is to cause the right
ascension of the ascending node and argument of periapse of the orbit to vary linearly
in time. In the two-body problem these quantities remain constant. The oblateness
also causes a small change in the orbital period. Besides these secular effects (linear
changes in time) the oblateness causes (relatively) large periodic changes in all of the
orbital elements.

The rate of change in the node, periapse, and mean anomaly due to the second
degree zonal coefficient are (from Kaula [1966]), respectively,

dQ 3 /a.\?* cosi

@ - 2 ( ) (1 —e2) [ eEc2 (33)
dw _§ (5cos?i—1)

@ T 4"(a) ez C20 (34)
dM 3 \2 (3 -1

T =" (3) ——((fo-se'z)sn)"'w (35)

(Note that the unnormalized second degree zonal coeflicient is used in these expres-
sions.)

So as a first approximation, a satellite orbiting the Earth can be reasonably rep-
resented by a secularly precessing ellipse. This is an ellipse that has constant values
for the semi-major axis, eccentricity and inclination, and values that vary linearly in
time for the right ascension of the ascending node, argument of periapse and mean
anomaly. The actual motion of the satellite then consists of small deviations away
from this secularly precessing ellipse. To characterize these deviations away from this
precessing ellipse the solution presented by Kaula [1966] is very useful.



4.2 Kaula’s Solution

Kaula's approach was to define a reference orbital path corresponding to the secularly
precessing ellipse. The orbital elements that define this reference orbital path are
referred to as mean (or averaged) orbital elements. Kaula determined (to first order)
the deviation from these mean orbital elements caused by the spherical harmonic
coefficients of the gravity field. That is, it is assumed that the orbital elements can
be written in the form,

semi-major axis a*= a+Aa (36)

eccentricity "= e+Ae (37)

inclination "= i+ A (38)

right ascension of the ascending node Q= Q+Q,+A0 (39)
argument of periapse W' = wt+w,+ Aw (40)

mean anomaly M*= Mt+M,+AM  (41)

where the star quantities represent the osculating (true) orbital elements of the satel-

lite and the unstarred orbital elements are those that define the reference precessing

ellipse. The time ¢ is measured from a reference epoch and ,, w, and M, are the

values at the reference epoch. The deviations from the reference ellipse will be purely

periodic (assuming the mean orbital elements and rates have been accurately defined).
The resulting deviations in the orbital elements are of the form

@ ¢ (¢ +4oo

Aa=Y3S% 3 Acmp (42)

=1 m=0p=0q=—c0

where o represents any one of the six orbital elements. The individual Aagmpq can
be written in the forms

AQtmpg = CimpeStmpg  fora, e, and i (43)
Adtmpg = ClnpgSimpe  for @, w, and M (44)

where the C7, ,, are constants which depend upon the orbital elements of the reference
secularly precessing ellipse; and the Smp, and S;,,, functions are sinusoidal with
amplitudes dependent on the values of the gravity field spherical harmonic coefficients.

The constant Cg,,, coefficients are
a a.\¢ = n
Cimpg = 20 (—) FimpGp(€ - 2p + q) - (45)
a tmpq
. a. €(1 - e2 1/2 _ n
Cempg = (-) (——)_FlMPGlm [(1 -3 e—2p+q) - (€~ QP)] . (46)
a e Yempq
; _ (8 Gy 7 [((—2p)cosi—m] n _
Cl"lpq ( a ) (1 - 82)1/2 Flmp sini wlmpq (4‘)
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Cempg = ( 2 ) sini 0 (1—e?)1/2 d}zmm (49)

v _ [\ z Calp n _ (1=€%) 0G| _1n
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(50)

The sinusoidal functions Sgmpe and S;mm are

é {—m even S {—m even
Stmpg = [ _ S’:: ] COS Yempq + [ C’:: ] Sl Yempq (51)

¢~m odd t-m odd

S;, = Cj‘"‘ e sin ¥, - S‘"‘ ome cos ¥ (52)
tmpa —Stm t—m odd e Cem t-m odd e

The periodicities of the orbital element variations caused by the gravity field are
thus,

Vimpg = (£ = 20)0 + (€ = 2p + )M + m(Q2 — §) (53)

where @ is the Earth rotation rate, £ and m are the spherical harmonic degree and
order, p is an integer that can take on the values 0 to ¢, and ¢ is an integer that can
take on the values +00. Kaula's solution is obtained through an expansion in the
orbital eccentricity which is the reason the index ¢ has an infinite extent. For orbits
with small eccentricities only a small range of ¢ values needs to be considered. High
eccentricity orbits require the consideration of much greater range in q and Kaula'’s
solution may not be the best approach in such cases.

4.3 Position Perturbation

Kaula’s solution provides a prediction of the expected variation in the Kepler or-
bital elements due to the gravity field. This formulation is useful for determining
the amplitudes and frequencies of the variations in the osculating orbital elements.
To determine how these orbital element perturbations are manifested in terms of a
position displacement of the satellite (with respect to the reference secularly precess-
ing ellipse) it is necessary to transform the results back into a Cartesian coordinate
system. The chosen coordinate system for doing this is the rotating radial, transverse
(along-track), and normal (cross-track) system. This coordinate system is defined by
the reference secularly precessing ellipse. The radial direction is along the radius vec-
tor, transverse is perpendicular to the radius vector (in the orbital plane and positive
in the direction of the satellite motion), and normal is perpendicular to the orbital
plane (and positive in the direction of the angular momentum vector).



The corresponding position perturbation in the radial, transverse, and normal
directions is given by the following relations (Rosborough and Tapley, [1987])

ar or or
Ar = -a—aAa + 7 e —Ae + WAM (54)
AT = (Aw + %AM + AQ cos i) (55)
An = r[Aisin(w + f) — AQsinicos(w + f)] (56)

where f is the true anomaly as measured along the reference secularly precessing
ellipse (the central angle from the point of periapse to the satellite location). Given
the expected perturbations in the orbital elements from Kaula’s solution it is then
possible to compute the corresponding position perturbations using these mapping
relations.

In the application at hand, the satellites of interest are established in orbits with
small eccentricity. This allows for an accurate evaluation of the expected orbital el-
ement variations using a very limited range of ¢ values. This in turn simplifies the
evaluation for the position perturbation. Assuming a small eccentricity, the pertur-
bations in the radial, transverse and normal components are approximately given

by

oo ¢ ¢

Ar = Z Z Z ClmpStmpo (57)
{=1m=0p=0
o ¢ ¢

AT = 33 3 CimpSimp (58)
(=1 m=0p=0
w €

An = Z Z (C?:ps(.&l)mpo - Clnr;p‘s('t—l)mpO) (59)
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The constant coefficients C7,,, Cznp, C,,,,, and Cy,, depend upon the orbital elements
and rates of the reference secularly precessing ellipse and are given by,

N\ = 2(€ -2 4p—-3¢—-1 4p—-¢€+1
C;mp = na (a_) Flmp [ ( Y P) + P T + pﬁ + ] (60)
a 1L’lmp() 2¢emp1 2¢lmp—l
cr - 2(6+1)-3(¢~ 2P).,,,,o+4p—3e-1+e—4p—1
tmp wlmpO ‘wlmpl wlmp— 1
(61)
r, = 2(%) ‘n — ) Femp _ OFemp
Comp = 2 tmp0 {[ (6= 2p)cosi - m} sini ot (62)
_ 2 a, n - af},,.,
Comp = 2 wempo {[ (¢ — 2p) cosi m] o X } (63)



5 Perturbations in Laser Range

Of particular interest in this application is the expected orbit error signal that will
be observed using satellite laser ranging. The orbit perturbations produced by the
gravity field cause a perturbation in position (in three-dimensions) as described in the
preceding section. This perturbation in position will result in a perturbation of the
expected station-to-satellite range measurement. The final step is to then determine
this perturbation in the range observable.

The station-to-satellite range is

p=yE -z +(y—w)?+ (2~ 2) (64)

where z, y, z are the Cartesian coordinates of the satellite and z,, y,, 2, are the Carte-
sian coordinates of the tracking station. The perturbation in the range measurement
due to a perturbation in the satellite position is given (to first order) by

Az
bp = ATB=|E3 b 2= Ay (65)
Az
= T DA LT Veny 22200, (66)
P p p

where Az, Ay, and Az are the perturbations in the satellite position. The perturba-
tions in the satellite Cartesian position will now be expressed in terms of the already
specified radial, transverse, and normal position perturbations. The transformation
between these two orthogonal coordinate systems is

Ar Ry, Ri2 Ry || Az
D=| At |=RB = Rzl R22 R23 Ay (67)
An R3; Rz Ra Az

The rows of the R rotation matrix contain the components of the unit vectors in the
radial, transverse, and normal directions. That is,

i, Ffr
R=|14,|= i, x 4, (68)
g | | Fx D)%

Thus, given the perturbations in the radial, transverse, and normal components, it
is possible to compute the corresponding perturbations in the ryz Cartesian system.
And the resulting perturbation in the range measurement is

Ar
Ap=ATB = ATRTD = ATRT| A~ (69)
An






6 Covariance Analysis

The preceding analysis provides the tools for determining the perturbations in the
satellite orbit position (in terms of orbital elements or Cartesian position) and the
resultant perturbation in a station-to-satellite range measurement. These perturba-
tions describe the effect on the orbit of the perturbing gravitational potential with
respect to the reference precessing ellipse. Since the relations are all linear with re-
spect to the gravity spherical harmonic coefficients, one can equally well determine
the effect of errors in the coefficients (as opposed to the entire effect). Since a nominal
gravity model is used in the analysis of geodetic satellite tracking data, it is in fact
the error in the coefficients that is of most interest and not the entire effect (most of
which is being accurately modeled by the nominal gravity model). However, the error
in the coefficients is obviously not known. But the statistics of the expected error
(in the gravity field coefficients) is known. This knowledge of the error statistics is a
by-product of the least-squares process used in the estimation of the nominal gravity
model, and it is represented by the estimated error covariance matrix.

Define a vector which contains the differences of the true gravity field spherical
harmonic coefficients with respect to the nominal gravity model values

Cu-Cp| | 5Co
Ca - Cy 6Ca
Sa1 — 53 65
Con—Cp | | 6C
sog| |
sg=|C0—Cd|=|Cn -

I Can - C5 6Cs 7o)
S31 — Sa dSn

C-’40 - é;o 6640

where the coefficients with an asterisk denote the values used in the nominal gravity
field model. The error covariance matrix of the estimated coefficients is then

P, = E[6g59" (71)

where E is the expectation operator. The gravity field coefficient error covariance
matrix P, is an n X n symmetric matrix where n is the total number of coefficients.
Using the gravity field error covariance and the linear relations between the orbit
perturbations and the gravity field coefficients, it is possible to compute the estimated
orbit position variance. Similarly, the estimated station-to-satellite range error vari-
ance can also be obtained. So for a given uncertainty in the gravity field (as provided
by the estimated error covariance matrix Py) it is possible to determine what the
expected uncertainty in the satellite position and/or range measurement will be.



As noted, the relations between the orbit perturbations and the gravity field co-
efficients are linear, and thus can all be expressed in the form

be = FTég (72)

where F is the vector of coefficients that multiply the gravity field coefficients. The
quantity e can represent any quantity of interest that has been previously derived:
orbital element; radial, transverse, normal position component; Cartesian position
components; or the range measurement error. In each case, the coefficients in the
vector F will differ, but the linear relation with respect to the gravity field coefficients
always exist. The lower case § is used to indicate that the perturbation is resulting
from an error in the gravity field coefficients; as opposed to the previously used upper
case A which was used to denote the full perturbation effect due to the gravity field
coefficients.
The variance in the quantity ¢ is then

P, = E[FT6g6g" F] = FTE[ég6gT|F = FTF,F (73)



7 Applications

These analytical developments were applied to the particular case of laser range track-
ing of the Lageos satellite. The problem was to determine the expected magnitude
and characteristic of the Lageos orbit error due to gravitational field mismodeling
as observed through laser range tracking. In this study the gravity field error co-
variance for GEM-T1 and GEM-T2 were used to quantify the current uncertainty
of the Earth’'s gravity field. Thus the results presented here are only indicative of
the current state of the art as represented by GEM-T1 and GEM-T2. Though the
methodology described in this report can continually be applied to new fields that
are developed and thus provide another means for quantifying the improved accuracy
that such fields provide.

7.1 Lageos and the Tracking Network

The geodetic satellite Lageos is an excellent satellite for analysing the effect of gravity
field mismodeling. The satellite is in a high near-circular orbit which decreases its
sensitivity to the high degree gravity field coefficients but at the same time it is
also minimally effected by nongravitational forces which could mask the gravitational
perturbations. So while it does not provide a good test for the entire gravity field
model, it does provide a stringent test for the low degree portions of the gravity field
(approximately up to degree 20). The orbital elements of the Lageos satellite are
given in Table 3.

Table 3. Lageos Orbital Elements.

Orbital Element Value
semi-major axis 12,271 km
eccentricity 0.0044
inclination 109.84 degrees

Geodetic satellites such as Lageos are tracked by a globally distributed network of
laser ranging stations. Some of these stations operate at a fixed location and others
are transportable and have operated at a number of locations. This has resulted in
observations being obtained at well more than 50 locations. To evaluate the expected
Lageos laser range residuals that could result from mismodeling the gravity field, a
representative subset of 20 tracking locations have been used in this study. These
stations are globally distributed and are listed in Table 4.



Table 4. Subset of Laser Range Tracking Station Locations.

Location East Longitude Latitude
Arequipa, Peru 288.5° -16.5°
Easter Island, Chile 250.6° -27.1°
Goldstone, USA 243.2° 35.2°
Grasse, France 6.9° 43.8°
Graz, Austria 15.5° 47.1°
Greenbelt, USA 283.2° 39.0°
Haleakala, USA 203.7° 20.7°
Huahine, French Polynesia 209.0° -16.7°
Kwajalein, USA 192.5° 9.4°
Matera, Italy 16.7° 40.6°
McDonald Observatory, USA 256.0° 30.7°
Monument Peak, USA 243.6° 32.9°
Orroral, Australia 149.0° -=35.6°
Platteville, USA 255.3° 40.2°
Quincy, USA 239.1° 40.0°
Royal Greenwich Observatory, UK 0.3° 50.9°
Shanghai, China 121.2° 31.1°
Simosato, Japan 135.9° 33.6°
Wettzell, Germany 12.9° 49.1°
Yaragadee, Australia 115.3° -29.0°

7.2 Predicted Range Uncertainty

For each of the tracking station locations listed in Table 4, the expected uncertainty
of the station-to-satellite range was determined for the Lageos satellite and using the
error covariance matrices of the GEM-T1 and GEM-T2 gravity field models. These
uncertainties were computed for every geographic location of the Lageos satellite that
placed the satellite at least 20 degrees above the horizon with respect to the tracking
station location. Thus, the uncertainty varied depending on the relative orientation
of the satellite with respect to the tracking site. The results of these computations
are summarized in Table 5 for GEM-T1 and Table 6 for GEM-T2.



Table 5. Station-to-Satellite Range Uncertainty for Lageos.

Based on the GEM-T1 Gravity Field Error Covariance.

Range Uncertainty in millimeters

Ascending Descending Overall
Station Min Max RMS Min Max RMS RMS
Arequipa 11 22 16 13 23 17 16
Easter Island 12 33 20 12 24 17 19
Goldstone 11 25 17 12 20 15 16
Grasse 11 26 18 12 33 22 20
Graz 11 28 18 12 33 22 20
Greenbelt 11 23 16 12 23 16 16
Haleakala 14 31 21 12 21 16 18
Huahine 15 35 23 12 23 17 20
Kwajalein 15 33 22 12 21 16 19
Matera 12 24 18 12 35 22 20
McDonald Observatory 11 23 16 12 21 15 16
Monument Peak 11 24 17 12 20 15 16
Orroral 12 32 21 11 24 17 19
Platteville 11 23 17 11 21 16 16
Quincy 11 25 18 11 21 15 17
Greenwich Observatory 11 27 18 11 30 21 19
Shanghai 13 31 21 13 28 19 20
Simosato 13 33 22 12 26 18 20
Wettzell 11 29 18 12 33 22 20
Yaragadee 12 24 18 11 25 17 18

Table 8. Station-to-Satellite Range Uncertainty for Lageos.

Based on the GEM-T2 Gravity Field Error Covariance.

Range Uncertainty in millimeters

Ascending Descending Overall
Station Min Max RMS Min Max RMS RMS
Arequipa 7 14 10 7 14 10 10
Easter Island 7 19 12 7 15 11 11
Goldstone 7 15 10 7 12 9 10
Grasse 7 15 11 7 17 11 11
Graz 7 15 10 7 17 12 11
Greenbelt 7 14 10 7 14 10 10




Table 6. Continued.
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Range Uncertainty in millimeters

Ascending Descending Overall
Station Min Max RMS Min Max RMS RMS
Haleakala 8 17 12 8 13 10 11
Huahine 9 19 13 7 14 10 12
Kwajalein 9 18 12 8 14 10 11
Matera 7 14 10 7 18 12 11
McDonald Observatory 7 14 10 7 12 9 10
Monument Peak 7 15 10 7 12 9 10
Orroral 7 17 12 7 15 11 11
Platteville 7 14 10 7 13 10 10
Quincy 7 15 11 7 13 10 10
Greenwich Observatory 7 15 11 7 15 11 11
Shanghai 7 16 11 8 16 11 11
Simosato 8 16 11 8 14 11 11
Wettzell 7 15 11 7 17 12 11
Yaragadee 7 15 11 7 15 11 11

These results demonstrate the improvement in gravity field modeling provided by
GEM-T2 versus GEM-T1. The overall uncertainty in the overall station-to-satellite
range uncertainty decreased from approximately 20 mm to 10 mm. In all cases
the range uncertainty tends to be largest when the satellite is low on the horizon
(relative to the tracking site) and smallest when the satellite is directly overhead of
the tracking site. This is not unexpected since the transverse component of the orbital
perturbations are much larger than the radial component. And it is the transverse
component that is predominantly being observed by the ranging system when the
satellite is low in the sky. When the satellite is more directly overhead a more direct
detection of the radial orbit error is being made. This geographic variation of the
range uncertainty is clearly shown in the figures of the Appendix.



8 Conclusions

The linear perturbation approach, patterned after the method of Kaula [1966], is
a powerful analysis technique for evaluating the accuracy of gravity field modeling.
Given the expected uncertainty in the spherical harmonic coefficients of a gravity
field model, via the error covariance matrix from least squares, the corresponding
expected uncertainty in the orbital motion can be determined in a straightforward
manner. And these results can then be extended to determine how these orbital
modeling errors will be observed through the satellite tracking system.

Analysis of the Lageos satellite and the gravity field models GEM-T1 and GEM-
T2 have shown that the orbital motion is being modeled to the 1-2 cm accuracy level
in terms of station-to-satellite range measurements. This accuracy is compatible (in
an RMS sense) with the current accuracy of laser range measurements. The range
uncertainty as a function of geographic location, shows that gravity field mismodeling
will still at times be significantly above the laser range measurement accuracy, and
thus still can be a limiting factor in Lageos geophysical studies.
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9 Appendix

The attached figures illustrate the variation of the range uncertainty for each of the
tracking sites that have been considered. Figures are only presented for the case of
using the GEM-T1 gravity field model. The results for the GEM-T2 model are very
similar in character and primarily differ by having an overall smaller magnitude. For
each of the tracking sites two figures are presented — one figure for the situation of
Lageos being tracked while on an ascending pass and the corresponding case for when
Lageos is being tracked on a descending pass. The contours of the range uncertainty
are computed over a slightly larger geographic extent than the results provided in
Tables 5 and 6. Here the range uncertainty is evaluated for station-to-satellite ele-
vations down to 10 degrees (instead of 20 degrees). This larger geographic coverage
provides for a slightly better visualization of the character of the range uncertainty.
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= 21 MM

RMS

32 MM

1

= 12 MM MAXIMUM
= MM

CONTOUR INTERVAL

MINIMUM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
RGO TRACKING LAGEOS ALONG DESCENDING PASSES
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= 11 MM M?XénUM = 34 MM RMS = 22 MM

CONTOUR INTERVAL

MINIMUM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
SIMOSATO TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 34 MM RMS = 22 MM
CONTOUR INTERVAL = 1 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
SHANGAHI TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 29 MM RMS = 280 MM
CONTOUR INTERVAL = 1 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
WETTZELL TRACKING LAGEOS ALONG ASCENDING PASSES

= 11 MM MAXIMUM = 33 MM RMS = 19 MM
CONTOUR INTERVAL = 1 MM

MINIMUM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
SIMOSATO TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 31 MM RMS = 19 MM
CONTOUR INTERVAL = 1 MM




RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
YARAGADEE TRACKING LAGEOS ALONG ASCENDING PASSES
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MINIMUM

CONTOUR INTERVAL

11 MM

MAXIMUM
1 MM

26 MM

RMS

19 MM
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WETTZELL TRACKING LAGEOS ALONG DESCENDING PASSES

RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
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12 MM M?XénUM = 37 MM RMS = 23 MM

CONTOUR INTERVAL

MINIMUM
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YARAGADEE TRACKING LAGEOS ALONG DESCENDING PASSES

RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
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= 26 MM
MM
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= 11 MM MAXIMUM

CONTOUR INTERVAL

MINIMUM



